论文标题

神经网络的模棱两可的建筑优化

Equivariance-aware Architectural Optimization of Neural Networks

论文作者

Maile, Kaitlin, Wilson, Dennis G., Forré, Patrick

论文摘要

将与对称群体的等效性纳入神经网络训练期间的约束可以提高表现出对称对称性的任务的性能和概括,但是这种对称性通常不是完美或明确的。这激发了算法优化算术的建筑约束。我们提出了均衡性放松形态,该形态保留了功能,同时重新聚集了群体均衡层,以在亚组上的均衡性约束以及[G]混合的均衡层,该层混合了限制在不同基团的层,以使不同的基团在层中启用较高的均值优化。我们进一步介绍了分别利用这些机制进行均值感知的体系结构优化的进化和可区分的神经体系结构搜索(NAS)算法。各种数据集的实验显示了动态约束的均衡性的好处,以找到具有近似值的有效体系结构。

Incorporating equivariance to symmetry groups as a constraint during neural network training can improve performance and generalization for tasks exhibiting those symmetries, but such symmetries are often not perfectly nor explicitly present. This motivates algorithmically optimizing the architectural constraints imposed by equivariance. We propose the equivariance relaxation morphism, which preserves functionality while reparameterizing a group equivariant layer to operate with equivariance constraints on a subgroup, as well as the [G]-mixed equivariant layer, which mixes layers constrained to different groups to enable within-layer equivariance optimization. We further present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization. Experiments across a variety of datasets show the benefit of dynamically constrained equivariance to find effective architectures with approximate equivariance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源