论文标题
T5用于仇恨言论,增强数据和合奏
T5 for Hate Speech, Augmented Data and Ensemble
论文作者
论文摘要
我们使用不同的6个不同数据集的11个子任务,对自动仇恨言论(HS)检测进行相对广泛的研究。我们的动机是确定哪种最近的SOTA模型最适合自动仇恨语音检测以及最佳模型(如果有)可能具有哪种优势方法(例如数据增强和合奏)。我们进行了6次交叉任务调查。我们在两个子任务上实现了新的SOTA -HASOC 2020数据集的子任务A和B的宏F1分数为91.73%和53.21%,该数据集的先前SOTA分别为51.52%和26.52%。我们在其他两个方面取得了近距离 - OLID 2019数据集的子任务A的宏F1分数为81.66%,HASOC 2021数据集的子任务A分别为82.54%,SOTA分别为82.9%和83.05%。我们执行错误分析,并使用两种可解释的人工智能(XAI)算法(IG和SHAP)来揭示两个模型(Bi-LSTM和T5)如何通过使用示例来做出预测。这项工作的其他贡献是1)引入了一种简单的新型机制,用于纠正T5中的同类外(OOC)预测,2)对数据增强方法的详细描述,3)hasoc 2021数据集中较差的数据注释的启示,通过使用几个示例和Xai(Buthatersing需要更好的质量控制)和4个模型和4个模型和我们的模型。
We conduct relatively extensive investigations of automatic hate speech (HS) detection using different state-of-the-art (SoTA) baselines over 11 subtasks of 6 different datasets. Our motivation is to determine which of the recent SoTA models is best for automatic hate speech detection and what advantage methods like data augmentation and ensemble may have on the best model, if any. We carry out 6 cross-task investigations. We achieve new SoTA on two subtasks - macro F1 scores of 91.73% and 53.21% for subtasks A and B of the HASOC 2020 dataset, where previous SoTA are 51.52% and 26.52%, respectively. We achieve near-SoTA on two others - macro F1 scores of 81.66% for subtask A of the OLID 2019 dataset and 82.54% for subtask A of the HASOC 2021 dataset, where SoTA are 82.9% and 83.05%, respectively. We perform error analysis and use two explainable artificial intelligence (XAI) algorithms (IG and SHAP) to reveal how two of the models (Bi-LSTM and T5) make the predictions they do by using examples. Other contributions of this work are 1) the introduction of a simple, novel mechanism for correcting out-of-class (OOC) predictions in T5, 2) a detailed description of the data augmentation methods, 3) the revelation of the poor data annotations in the HASOC 2021 dataset by using several examples and XAI (buttressing the need for better quality control), and 4) the public release of our model checkpoints and codes to foster transparency.