论文标题
超快电子定位和筛选过渡金属二甲藻类
Ultrafast electron localization and screening in a transition metal dichalcogenide
论文作者
论文摘要
半导体中光与电荷载体的耦合是许多技术应用的基础。 Attosent瞬时吸收光谱同时测量了激发电子和它们留下的空缺如何动态地与所应用的光场反应。在复合半导体中,可以通过其任何原子成分探测这些动力学。通常,形成该化合物的原子物种对材料的相关电子性质有相当的影响。因此,人们希望观察到类似的动力学,而与探测的原子物种的选择无关。在这里,我们在二维过渡金属二进制二进制半导体半导体$ mose_2 $中表明,通过基于硒的过渡,我们观察到荷叶携带者彼此独立起作用的电荷载体,而当通过Molybdenum探测时,载体的集体,多体运动的载体占据了主导。这种出乎意料的对比行为可以追溯到吸收光后钼原子周围电子的强烈定位,这修改了作用在载体上的局部场。我们表明,元素钛金属中的类似行为也将其运送到含过渡金属化合物的化合物中,并有望在各种此类材料中起着至关重要的作用。对独立粒子和集体响应的了解对于充分理解这些材料至关重要。
The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents. Often, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor $MoSe_2$, that through a selenium-based transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be traced back to a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.