论文标题

Fregan:在有限的数据下利用用于训练gan的频率组件

FreGAN: Exploiting Frequency Components for Training GANs under Limited Data

论文作者

Yang, Mengping, Wang, Zhe, Chi, Ziqiu, Zhang, Yanbing

论文摘要

在有限的数据下进行培训通常会导致歧视者过度拟合和记忆问题,从而导致培训不同。现有方法通过采用数据增强,模型正则化或注意机制来减轻过度拟合。但是,他们忽略了gan的频率偏差,并且对频率信息的考虑不佳,尤其是包含丰富细节的高频信号。为了充分利用有限数据的频率信息,本文提出了Fregan,它提高了模型的频率意识,并引起了人们对产生高频信号的更多关注,从而促进了高质量的生成。除了利用真实图像和生成的图像的频率信息外,我们还涉及真实图像的频率信号作为一个自我监督的约束,这减轻了GAN的不平衡,并鼓励发电机合成适当而不是任意频率信号。广泛的结果表明,我们的频fregan在减轻低数据制度中的发电质量方面的优势和有效性(尤其是在训练数据小于100时)。此外,弗里根(Fregan)可以无缝应用于现有的正则化和注意机制模型,以进一步提高性能。

Training GANs under limited data often leads to discriminator overfitting and memorization issues, causing divergent training. Existing approaches mitigate the overfitting by employing data augmentations, model regularization, or attention mechanisms. However, they ignore the frequency bias of GANs and take poor consideration towards frequency information, especially high-frequency signals that contain rich details. To fully utilize the frequency information of limited data, this paper proposes FreGAN, which raises the model's frequency awareness and draws more attention to producing high-frequency signals, facilitating high-quality generation. In addition to exploiting both real and generated images' frequency information, we also involve the frequency signals of real images as a self-supervised constraint, which alleviates the GAN disequilibrium and encourages the generator to synthesize adequate rather than arbitrary frequency signals. Extensive results demonstrate the superiority and effectiveness of our FreGAN in ameliorating generation quality in the low-data regime (especially when training data is less than 100). Besides, FreGAN can be seamlessly applied to existing regularization and attention mechanism models to further boost the performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源