论文标题

Borel $(α,β)$ - 多晶体和量子leray-hirsch:$ \ mathbb p^1 $ bundles的量子微分方程解决方案解决方案的积分表示

Borel $(α,β)$-multitransforms and Quantum Leray-Hirsch: integral representations of solutions of quantum differential equations for $\mathbb P^1$-bundles

论文作者

Cotti, Giordano

论文摘要

在本文中,我们解决了与$ \ mathbb p^1 $ bundiesties上的量子分化方程式($ QDE $ s)的等异构粒子系统的集成问题。结果表明,可以从与基本空间相关的相应$ QDE $的解决方案的基础基础基础上重建$ \ Mathbb P^1 $ -Bundle的$ QDE $的解决方案基础。这代表了在量子质量共同体学方法的背景下,经典的leray-hirsch定理的量子类似物。解决方案的重建过程可以根据某些积分转换(在Arxiv:2005.08262中引入,称为$ borel $ $ $ $(α,β)$ - $ MULTITITRANSF \!ORMS $。我们强调了一个有趣的特殊功能序列(与Böhmer-Tricomi不完整伽马函数的迭代部分衍生物密切相关的有趣序列(密切相关)作为积分内核的出现。值得注意的是,这些整体内核具有通用功能,独立于特定选择的$ \ mathbb p^1 $ -Bundle。当应用于投影空间产品的投影捆绑包时,我们的结果为$ QDE $ s的解决方案提供了Mellin-Barnes的积分表示。例如,我们展示了如何通过$ \ $ \ sathbb p^1 $的Borel MultiTiTransforts在某个点集成$ \ Mathbb p^2 $的$ QDE $。

In this paper, we address the integration problem of the isomonodromic system of quantum differential equations ($qDE$s) associated with the quantum cohomology of $\mathbb P^1$-bundles on Fano varieties. It is shown that bases of solutions of the $qDE$ of the total space of the $\mathbb P^1$-bundle can be reconstructed from the datum of bases of solutions of the corresponding $qDE$ associated with the base space. This represents a quantum analog of the classical Leray-Hirsch theorem in the context of the isomonodromic approach to quantum cohomology. The reconstruction procedure of the solutions can be performed in terms of some integral transforms, introduced in arXiv:2005.08262, called $Borel$ $(α,β)$-$multitransf\!orms$. We emphasize the emergence, in the explicit integral formulas, of an interesting sequence of special functions (closely related to iterated partial derivatives of the Böhmer-Tricomi incomplete Gamma function) as integral kernels. Remarkably, these integral kernels have a universal feature, being independent of the specifically chosen $\mathbb P^1$-bundle. When applied to projective bundles on products of projective spaces, our results give Mellin-Barnes integral representations of solutions of $qDE$s. As an example, we show how to integrate the $qDE$ of blow-up of $\mathbb P^2$ at one point via Borel multitransforms of solutions of the $qDE$ of $\mathbb P^1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源