论文标题
部分可观测时空混沌系统的无模型预测
DEPTWEET: A Typology for Social Media Texts to Detect Depression Severities
论文作者
论文摘要
缺乏标准类型学和足够数据的稀缺性,通过数据驱动的方法进行了心理健康研究。在这项研究中,我们利用抑郁症的临床表达来建立一种社交媒体文本的类型,用于检测抑郁症的严重程度。它模拟了精神障碍(DSM-5)和患者健康问卷(PHQ-9)的标准临床评估程序诊断和统计手册,以涵盖推文中抑郁症的微妙指示。除类型学外,我们还提供了由专家注释者标记的40191推文的新数据集。每个推文都标记为“不抑制”或“沮丧”。此外,“沮丧”推文考虑了三个严重程度:(1)轻度,(2)中度和(3)严重。每个标签都提供相关的置信度评分,以验证注释的质量。我们通过表示摘要统计数据来检查数据集的质量,同时使用Bert和Distilbert等基于注意力的模型设置强大的基线结果。最后,我们广泛解决了研究的局限性,以提供进一步研究的方向。
Mental health research through data-driven methods has been hindered by a lack of standard typology and scarcity of adequate data. In this study, we leverage the clinical articulation of depression to build a typology for social media texts for detecting the severity of depression. It emulates the standard clinical assessment procedure Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and Patient Health Questionnaire (PHQ-9) to encompass subtle indications of depressive disorders from tweets. Along with the typology, we present a new dataset of 40191 tweets labeled by expert annotators. Each tweet is labeled as 'non-depressed' or 'depressed'. Moreover, three severity levels are considered for 'depressed' tweets: (1) mild, (2) moderate, and (3) severe. An associated confidence score is provided with each label to validate the quality of annotation. We examine the quality of the dataset via representing summary statistics while setting strong baseline results using attention-based models like BERT and DistilBERT. Finally, we extensively address the limitations of the study to provide directions for further research.