论文标题

FusionDeepMF:一种基于双重嵌入的深融合模型

FusionDeepMF: A Dual Embedding based Deep Fusion Model for Recommendation

论文作者

Mandal, Supriyo, Maiti, Abyayananda

论文摘要

采用基于传统的协作过滤(CF)方法来了解用户/客户对评级矩阵中项目或产品的个人喜好。通常,额定矩阵本质上很少。因此,有一些改进的CF方法变体应用于越来越多的侧面信息来解决稀疏问题。在大多数可用的建议相关工作中,仅应用线性内核或仅应用非线性内核,以了解数据中的用户项目潜在功能嵌入。只有线性内核或仅非线性内核不足以从用户的附带信息中学习复杂的用户项目功能。最近,一些研究人员专注于混合模型,这些模型通过非线性内核学习了某些功能以及其他一些具有线性内核的功能。但是,很难理解可以使用线性内核或非线性内核准确地学习哪些功能。为了克服这个问题,我们提出了一个名为FusionDeepMF的新颖的深融合模型,并且该模型的新颖尝试是通过线性和非线性内核学习用户项目额定矩阵和侧面信息,ii)同时应用调谐参数,确定从线性和非线性核仁中产生的双重嵌入之间的折衷。在线评论数据集上进行的广泛实验表明,与其他基线方法相比,FusionDeepMF可能是非常未来派的。经验证据还表明,与矩阵分解(MF)和多层Perceptron(MLP)的非线性内核相比,融合DeepMF的性能更好。

Traditional Collaborative Filtering (CF) based methods are applied to understand the personal preferences of users/customers for items or products from the rating matrix. Usually, the rating matrix is sparse in nature. So there are some improved variants of the CF method that apply the increasing amount of side information to handle the sparsity problem. Only linear kernel or only non-linear kernel is applied in most of the available recommendation-related work to understand user-item latent feature embeddings from data. Only linear kernel or only non-linear kernel is not sufficient to learn complex user-item features from side information of users. Recently, some researchers have focused on hybrid models that learn some features with non-linear kernels and some other features with linear kernels. But it is very difficult to understand which features can be learned accurately with linear kernels or with non-linear kernels. To overcome this problem, we propose a novel deep fusion model named FusionDeepMF and the novel attempts of this model are i) learning user-item rating matrix and side information through linear and non-linear kernel simultaneously, ii) application of a tuning parameter determining the trade-off between the dual embeddings that are generated from linear and non-linear kernels. Extensive experiments on online review datasets establish that FusionDeepMF can be remarkably futuristic compared to other baseline approaches. Empirical evidence also shows that FusionDeepMF achieves better performances compared to the linear kernels of Matrix Factorization (MF) and the non-linear kernels of Multi-layer Perceptron (MLP).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源