论文标题

部分可观测时空混沌系统的无模型预测

Self-supervised debiasing using low rank regularization

论文作者

Park, Geon Yeong, Jung, Chanyong, Lee, Sangmin, Ye, Jong Chul, Lee, Sang Wan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability. While most existing debiasing methods require full supervision on either spurious attributes or target labels, training a debiased model from a limited amount of both annotations is still an open question. To address this issue, we investigate an interesting phenomenon using the spectral analysis of latent representations: spuriously correlated attributes make neural networks inductively biased towards encoding lower effective rank representations. We also show that a rank regularization can amplify this bias in a way that encourages highly correlated features. Leveraging these findings, we propose a self-supervised debiasing framework potentially compatible with unlabeled samples. Specifically, we first pretrain a biased encoder in a self-supervised manner with the rank regularization, serving as a semantic bottleneck to enforce the encoder to learn the spuriously correlated attributes. This biased encoder is then used to discover and upweight bias-conflicting samples in a downstream task, serving as a boosting to effectively debias the main model. Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines and, in some cases, even outperforms state-of-the-art supervised debiasing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源