论文标题

STSC-SNN:时空突触连接,随着时间卷积和尖峰神经网络的关注

STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution and Attention for Spiking Neural Networks

论文作者

Yu, Chengting, Gu, Zheming, Li, Da, Wang, Gaoang, Wang, Aili, Li, Erping

论文摘要

尖峰神经网络(SNNS)是神经形态计算中算法模型之一,由于时间信息处理能力,低功耗和高生物学上的出色性,因此引起了很多研究的关注。有效提取时空特征的潜力使其适合处理事件流。但是,SNN中的现有突触结构几乎是完全连接或空间2D卷积,它们都无法充分提取时间依赖性。在这项工作中,我们从生物突触中汲取灵感,并提出了时空突触连接SNN(STSC-SNN)模型,以增强突触连接的时空接收场,从而建立跨层的时间依赖性。具体而言,我们结合了时间卷积和注意机制,以实施突触过滤和门控功能。我们表明,具有时间依赖性的赋予突触模型可以提高SNN对分类任务的性能。此外,我们研究了性能vias的影响各种空间 - 周期性接受场,并重新评估了SNN中的时间模块。我们的方法在神经形态数据集上进行了测试,包括DVS128手势(手势识别),N-MNIST,CIFAR10-DVS(图像分类)和SHD(语音数字识别)。结果表明,所提出的模型几乎在几乎所有数据集上都优于最先进的精度。

Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal information processing capability, low power consumption, and high biological plausibility. The potential to efficiently extract spatio-temporal features makes it suitable for processing the event streams. However, existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither of which can extract temporal dependencies adequately. In this work, we take inspiration from biological synapses and propose a spatio-temporal synaptic connection SNN (STSC-SNN) model, to enhance the spatio-temporal receptive fields of synaptic connections, thereby establishing temporal dependencies across layers. Concretely, we incorporate temporal convolution and attention mechanisms to implement synaptic filtering and gating functions. We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks. In addition, we investigate the impact of performance vias varied spatial-temporal receptive fields and reevaluate the temporal modules in SNNs. Our approach is tested on neuromorphic datasets, including DVS128 Gesture (gesture recognition), N-MNIST, CIFAR10-DVS (image classification), and SHD (speech digit recognition). The results show that the proposed model outperforms the state-of-the-art accuracy on nearly all datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源