论文标题

部分可观测时空混沌系统的无模型预测

Mixed-modality Representation Learning and Pre-training for Joint Table-and-Text Retrieval in OpenQA

论文作者

Huang, Junjie, Zhong, Wanjun, Liu, Qian, Gong, Ming, Jiang, Daxin, Duan, Nan

论文摘要

从表格和文本资源中检索证据对于开放域问题答案(OpenQA)至关重要,该问题提供了更全面的信息。但是,由于表文本差异和数据稀疏问题的挑战,训练有效的致密表文本检索器很困难。为了应对上述挑战,我们引入了优化的OpenQA表文本回收者(Otter),以共同检索表格和文字证据。首先,我们建议通过两种机制增强混合模式表示学习:模态增强表示和混合模式负采样策略。其次,为了减轻数据稀疏性问题并增强一般检索能力,我们进行了以检索为中心的混合模式合成预训练。实验结果表明,水獭大大改善了OTT-QA数据集上表和文本检索的性能。全面的分析检查了所有提出的机制的有效性。此外,配备了Otter,我们的OpenQA系统在下游QA任务上实现了最新的结果,而与以前的最佳系统相比,确切匹配的绝对匹配度为10.1%。 所有代码和数据均可在https://github.com/jun-jie-huang/otter上获得。

Retrieving evidences from tabular and textual resources is essential for open-domain question answering (OpenQA), which provides more comprehensive information. However, training an effective dense table-text retriever is difficult due to the challenges of table-text discrepancy and data sparsity problem. To address the above challenges, we introduce an optimized OpenQA Table-Text Retriever (OTTeR) to jointly retrieve tabular and textual evidences. Firstly, we propose to enhance mixed-modality representation learning via two mechanisms: modality-enhanced representation and mixed-modality negative sampling strategy. Secondly, to alleviate data sparsity problem and enhance the general retrieval ability, we conduct retrieval-centric mixed-modality synthetic pre-training. Experimental results demonstrate that OTTeR substantially improves the performance of table-and-text retrieval on the OTT-QA dataset. Comprehensive analyses examine the effectiveness of all the proposed mechanisms. Besides, equipped with OTTeR, our OpenQA system achieves the state-of-the-art result on the downstream QA task, with 10.1% absolute improvement in terms of the exact match over the previous best system. All the code and data are available at https://github.com/Jun-jie-Huang/OTTeR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源