论文标题

Boxteacher:探索弱监督实例细分的高质量伪标签

BoxTeacher: Exploring High-Quality Pseudo Labels for Weakly Supervised Instance Segmentation

论文作者

Cheng, Tianheng, Wang, Xinggang, Chen, Shaoyu, Zhang, Qian, Liu, Wenyu

论文摘要

与边界盒相比,用像素细分的对象进行标记需要大量的人工劳动。弱监督实例细分的大多数现有方法都集中在通过边界盒中的先验设计启发式损失。虽然,我们发现盒子监督的方法可以产生一些细分面罩,并且我们想知道探测器是否可以从这些精美的口罩中学习,同时忽略低质量的口罩。为了回答这个问题,我们介绍了Boxteacher,这是一个高性能弱势监督实例细分的高效,端到端的培训框架,该框架利用了一位精致的教师将高质量的口罩作为伪标签。考虑到巨大的嘈杂面具损害了训练,我们提出了面具感知的置信度评分,以估算伪面罩的质量,并提出噪音吸引的像素损失和降噪亲和力损失,以通过伪口罩适应学生。广泛的实验可以证明拟议的Boxteacher的有效性。 Boxteacher在没有铃铛和哨声的情况下,分别在具有挑战性的可可数据集上,分别具有35.0个面膜AP和36.5面膜AP,分别具有Resnet-50和Resnet-101,这表现出了以前最新的方法,从而超过了先前的最新方法,并通过大量的差距和弥补了盒子的差距,并且可以在盒子中使用盒子和封装方法之间的差距。代码和模型将在https://github.com/hustvl/boxteacher上找到。

Labeling objects with pixel-wise segmentation requires a huge amount of human labor compared to bounding boxes. Most existing methods for weakly supervised instance segmentation focus on designing heuristic losses with priors from bounding boxes. While, we find that box-supervised methods can produce some fine segmentation masks and we wonder whether the detectors could learn from these fine masks while ignoring low-quality masks. To answer this question, we present BoxTeacher, an efficient and end-to-end training framework for high-performance weakly supervised instance segmentation, which leverages a sophisticated teacher to generate high-quality masks as pseudo labels. Considering the massive noisy masks hurt the training, we present a mask-aware confidence score to estimate the quality of pseudo masks and propose the noise-aware pixel loss and noise-reduced affinity loss to adaptively optimize the student with pseudo masks. Extensive experiments can demonstrate the effectiveness of the proposed BoxTeacher. Without bells and whistles, BoxTeacher remarkably achieves 35.0 mask AP and 36.5 mask AP with ResNet-50 and ResNet-101 respectively on the challenging COCO dataset, which outperforms the previous state-of-the-art methods by a significant margin and bridges the gap between box-supervised and mask-supervised methods. The code and models will be available at https://github.com/hustvl/BoxTeacher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源