论文标题
深傅立叶上采样
Deep Fourier Up-Sampling
论文作者
论文摘要
现有的卷积神经网络广泛采用空间下/向上采样进行多尺度建模。然而,空间上采样运算符(\ emph {e.g。},插值,转置卷积和解开)在很大程度上取决于局部像素的注意,无力探索全局依赖性。相反,根据光谱卷积定理,傅立叶域遵守全球建模的性质。与在局部相似性的属性上执行上采样的空间域不同,傅立叶域中的上采样更具挑战性,因为它不遵循这样的本地属性。在这项研究中,我们提出了理论上听起来很深的傅立叶上采样(傅立叶)来解决这些问题。我们重新审视空间和傅立叶域之间的关系,并揭示有关傅立叶域不同分辨率特征的转换规则,这些分辨率为傅立叶设计的设计提供了关键的见解。傅立叶作为通用操作员由三个关键组件组成:2D离散傅立叶变换,傅立叶尺寸增加规则和2D逆傅里叶变换,可以直接与现有网络集成。跨多个计算机视觉任务的广泛实验,包括对象检测,图像分割,图像去皮,图像去除和引导图像超分辨率,证明了通过引入我们的傅立叶来获得的一致性绩效增长。
Existing convolutional neural networks widely adopt spatial down-/up-sampling for multi-scale modeling. However, spatial up-sampling operators (\emph{e.g.}, interpolation, transposed convolution, and un-pooling) heavily depend on local pixel attention, incapably exploring the global dependency. In contrast, the Fourier domain obeys the nature of global modeling according to the spectral convolution theorem. Unlike the spatial domain that performs up-sampling with the property of local similarity, up-sampling in the Fourier domain is more challenging as it does not follow such a local property. In this study, we propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues. We revisit the relationships between spatial and Fourier domains and reveal the transform rules on the features of different resolutions in the Fourier domain, which provide key insights for FourierUp's designs. FourierUp as a generic operator consists of three key components: 2D discrete Fourier transform, Fourier dimension increase rules, and 2D inverse Fourier transform, which can be directly integrated with existing networks. Extensive experiments across multiple computer vision tasks, including object detection, image segmentation, image de-raining, image dehazing, and guided image super-resolution, demonstrate the consistent performance gains obtained by introducing our FourierUp.