论文标题

亚洲品种的亚地区家族的单肌

The monodromy of families of subvarieties on abelian varieties

论文作者

Javanpeykar, Ariyan, Krämer, Thomas, Lehn, Christian, Maculan, Marco

论文摘要

在最近的劳伦斯·韦卡特斯(Lawrence-Venkatesh)和劳伦斯·萨辛(Lawrence-Sawin)的工作中,我们表明,当被通用等级的一个本地系统扭曲时,阿贝尔品种中亚各种的非异端家族具有很大的单曲。尽管劳伦斯·萨辛(Lawrence-Sawin)讨论了编成阶段的案例,但我们的结果构成了编成子量的亚地区,至少是环境阿贝尔(Abelian Abelian)品种的一半。为了证明,我们结合了几何论证和表示理论,以表明此类亚地区的交叉综合体的坦纳卡群体很大。

Motivated by recent work of Lawrence-Venkatesh and Lawrence-Sawin, we show that non-isotrivial families of subvarieties in abelian varieties have big monodromy when twisted by generic rank one local systems. While Lawrence-Sawin discuss the case of subvarieties of codimension one, our results hold for subvarieties of codimension at least half the dimension of the ambient abelian variety. For the proof, we use a combination of geometric arguments and representation theory to show that the Tannaka groups of intersection complexes on such subvarieties are big.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源