论文标题

通过结构保护神经网络近期近期符号图的近似

Approximation of nearly-periodic symplectic maps via structure-preserving neural networks

论文作者

Duruisseaux, Valentin, Burby, Joshua W., Tang, Qi

论文摘要

具有参数$ \ VAREPSILON $的连续时间动力系统几乎是周期性的,如果其所有轨迹都是周期性的,无处可呈现角度频率,因为$ \ varepsilon $接近0。几乎有限的图像是几乎有限的时间类似物,定义为差异为comport依赖的差异范围的旋转范围,并且旋转范围是旋转的循环,并且$ u(1)$对称为所有订单时,限制旋转是非谐振的。对于哈密顿式的几乎周期性地图上,正式的$ u(1)$对称会产生一个离散的绝热不变性。在本文中,我们构建了一个新型的具有结构的神经网络,以近似几乎有周期性的符号图。我们称之为Symblectic Gyroceptron的这种神经网络架构可确保产生的替代图几乎是周期性的和符号的,并且会产生离散的绝热不变性和长期稳定性。这个新的传播结构神经网络为非隔离动力学系统的替代建模提供了一种有希望的体系结构,该系统自动在短时间内逐步逐步而无需引入虚假的不稳定性。

A continuous-time dynamical system with parameter $\varepsilon$ is nearly-periodic if all its trajectories are periodic with nowhere-vanishing angular frequency as $\varepsilon$ approaches 0. Nearly-periodic maps are discrete-time analogues of nearly-periodic systems, defined as parameter-dependent diffeomorphisms that limit to rotations along a circle action, and they admit formal $U(1)$ symmetries to all orders when the limiting rotation is non-resonant. For Hamiltonian nearly-periodic maps on exact presymplectic manifolds, the formal $U(1)$ symmetry gives rise to a discrete-time adiabatic invariant. In this paper, we construct a novel structure-preserving neural network to approximate nearly-periodic symplectic maps. This neural network architecture, which we call symplectic gyroceptron, ensures that the resulting surrogate map is nearly-periodic and symplectic, and that it gives rise to a discrete-time adiabatic invariant and a long-time stability. This new structure-preserving neural network provides a promising architecture for surrogate modeling of non-dissipative dynamical systems that automatically steps over short timescales without introducing spurious instabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源