论文标题

双病毒流行模型与网络上非线性速率的收敛 - 单调动力学系统方法

Convergence of Bi-Virus Epidemic Models with Non-Linear Rates on Networks -- A Monotone Dynamical Systems Approach

论文作者

Doshi, Vishwaraj, Mallick, Shailaja, eun, Do Young

论文摘要

我们研究了易感感染感染(SIS)类型的竞争流行模型的收敛性。 SIS流行模型在建模传染性的传播动力学(例如病毒,传染病,甚至是接触网络上的谣言/意见)方面广泛流行。我们分析了两个此类病毒在覆盖图上传播的情况,并具有非线性的感染率传播和恢复。我们将其称为非线性双病毒模型,并基于最新结果,获得了将解决方案全球收敛到可能的结果三分法的精确条件:无病毒状态,单病毒状态和共存状态。我们的技术基于单调动力学系统(MDS)的理论,与基于Lyapunov的技术相反,基于Lyapunov的技术仅在确定竞争性流行病的设置中确定收敛性能的部分成功。我们证明了现有作品如何在表征双病毒流行病的模型参数空间的大部分子集方面没有成功,包括所有导致流行病共存的情况。据我们所知,我们的结果是第一个为双病毒系统提供具有非线性感染和一般图上恢复速率的双病毒系统的完整收敛分析。

We study convergence properties of competing epidemic models of the Susceptible-Infected-Susceptible (SIS) type. The SIS epidemic model has seen widespread popularity in modelling the spreading dynamics of contagions such as viruses, infectious diseases, or even rumors/opinions over contact networks (graphs).We analyze the case of two such viruses spreading on overlaid graphs, with non-linear rates of infection spread and recovery. We call this the non-linear bi-virus model and, building upon recent results, obtain precise conditions for global convergence of the solutions to a trichotomy of possible outcomes: a virus-free state, a single-virus state, and to a coexistence state. Our techniques are based on the theory of monotone dynamical systems (MDS), in contrast to Lyapunov based techniques that have only seen partial success in determining convergence properties in the setting of competing epidemics. We demonstrate how the existing works have been unsuccessful in characterizing a large subset of the model parameter space for bi-virus epidemics, including all scenarios leading to coexistence of the epidemics. To the best of our knowledge, our results are the first in providing complete convergence analysis for the bi-virus system with nonlinear infection and recovery rates on general graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源