论文标题

数据增强的好,坏和丑陋的一面:隐性光谱正则化的观点

The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective

论文作者

Lin, Chi-Heng, Kaushik, Chiraag, Dyer, Eva L., Muthukumar, Vidya

论文摘要

数据增强(DA)是在现代机器学习中加强性能的强大主力军。传统上认为,特定的增强量(例如翻译和计算机视觉范围)可以通过从同一分布中产生新的(人造)数据来改善概括。但是,这种传统的观点并不能解释现代机器学习中普遍增强的成功(例如随机掩盖,切口,混合),这极大地改变了培训数据分布。在这项工作中,我们开发了一个新的理论框架,以表征DA的一般类别对未聚光和过度参数的线性模型概括的影响。我们的框架表明,DA通过两种不同效果的组合诱导隐式光谱正则化:a)以培训数据依赖性方式操纵数据协方差矩阵的相对比例,b)均匀地通过脊矩阵进行数据共价矩阵的整个光谱。当应用于流行的增强时,这些影响会引起各种现象,包括在过度参数化和参数化不足的政权和回归和分类任务之间的差异之间概括的差异。我们的框架强调了DA对概括的细微差别,有时甚至令人惊讶的影响,并作为新型增强设计的测试床。

Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between over-parameterized and under-parameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源