论文标题
DAAM的内容:使用交叉注意来解释稳定的扩散
What the DAAM: Interpreting Stable Diffusion Using Cross Attention
论文作者
论文摘要
大规模扩散神经网络是文本到图像生成中的一个重大里程碑,但它们仍然了解不足,缺乏可解释性分析。在本文中,我们对最近开源模型稳定扩散进行文本图像归因分析。为了产生像素级归因地图,我们在denoising子网中上升和汇总了跨注意单词像素分数,以命名我们的方法daam。我们通过测试其在名词上的语义分割能力以及其对语音各个部分的广义归因质量(由人类评级)来评估其正确性。然后,我们应用DAAM来研究语法在像素空间中的作用,表征了十种常见依赖关系的头部依赖热图相互作用模式。最后,我们使用DAAM研究了几种语义现象,重点是特征纠缠,在这里我们发现同型会使发电质量和描述性形容词的影响太大。据我们所知,我们是第一个从视觉语言学角度来解释大型扩散模型的人,这可以使未来的研究界限。我们的代码在https://github.com/castorini/daam上。
Large-scale diffusion neural networks represent a substantial milestone in text-to-image generation, but they remain poorly understood, lacking interpretability analyses. In this paper, we perform a text-image attribution analysis on Stable Diffusion, a recently open-sourced model. To produce pixel-level attribution maps, we upscale and aggregate cross-attention word-pixel scores in the denoising subnetwork, naming our method DAAM. We evaluate its correctness by testing its semantic segmentation ability on nouns, as well as its generalized attribution quality on all parts of speech, rated by humans. We then apply DAAM to study the role of syntax in the pixel space, characterizing head--dependent heat map interaction patterns for ten common dependency relations. Finally, we study several semantic phenomena using DAAM, with a focus on feature entanglement, where we find that cohyponyms worsen generation quality and descriptive adjectives attend too broadly. To our knowledge, we are the first to interpret large diffusion models from a visuolinguistic perspective, which enables future lines of research. Our code is at https://github.com/castorini/daam.