论文标题

在重力波的一般相对性测试中累积错误:重叠的信号和不准确的波形

Accumulating errors in tests of general relativity with gravitational waves: overlapping signals and inaccurate waveforms

论文作者

Hu, Qian, Veitch, John

论文摘要

紧凑型二元合并对引力波(GWS)的观察提供了强大的一般相对性测试(GR),但是数据分析中的系统错误可能导致科学结论不正确。在第三代GW探测器中,该问题尤为严重,其中信噪比(SNR)很高,并且检测数量很大。在这项工作中,我们研究了重叠信号和不准确的波形模型对GR测试的影响。我们为爱因斯坦望远镜和宇宙资源管理器模拟模拟目录,并使用具有不同级别的不准确性的波形模型对GR进行参数测试。我们发现,在组合多个事件的结果时,非GR参数估计中的系统误差可能会朝着与GR的错误偏差积累,尽管贝叶斯模型选择分析可能不利于偏差。波形不准确造成系统误差最大,但是多个重叠的信号可能会由于信号的删除不正确而放大系统学的影响。我们还指出,使用高SNR使用选定的“金色二进制文件”进行测试GR甚至更容易受到GR的错误偏差。误差积累问题是普遍的。我们强调,必须解决该数据以充分利用第三代GW检测器的数据,并且进一步的研究,特别是在波形准确性方面,至关重要。

Observations of gravitational waves (GWs) from compact binary coalescences provide powerful tests of general relativity (GR), but systematic errors in data analysis could lead to incorrect scientific conclusions. This issue is especially serious in the third-generation GW detectors in which the signal-to-noise ratio (SNR) is high and the number of detections is large. In this work, we investigate the impacts of overlapping signals and inaccurate waveform models on tests of GR. We simulate mock catalogs for Einstein Telescope and Cosmic Explorer and perform parametric tests of GR using waveform models with different levels of inaccuracy. We find the systematic error in non-GR parameter estimates could accumulate toward a false deviation from GR when combining results from multiple events, although a bayesian model selection analysis may not favour a deviation. Waveform inaccuracies contribute most to the systematic errors, but multiple overlapping signals could magnify the effects of systematics due to the incorrect removal of signals. We also point out that testing GR using selected ''golden binaries'' with high SNR is even more vulnerable to false deviations from GR. The problem of error accumulation is universal; we emphasize that it must be addressed to fully exploit the data from third-generation GW detectors, and that further investigations, particularly in waveform accuracy, will be essential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源