论文标题

关于神经odes的正向不变性

On the Forward Invariance of Neural ODEs

论文作者

Xiao, Wei, Wang, Tsun-Hsuan, Hasani, Ramin, Lechner, Mathias, Ban, Yutong, Gan, Chuang, Rus, Daniela

论文摘要

我们提出了一种新方法,以确保神经普通微分方程(ODE)通过使用不变性集传播满足输出规格。我们的方法使用一类控制障碍功能将输出规范转换为学习系统参数和输入的约束。此设置使我们能够仅通过更改训练和推理期间的约束参数/输入来实现输出规范保证。此外,我们证明了通过数据控制的神经ODES设置不变性不仅保持泛化性能,而且还通过启用了对系统参数/输入的因果操纵来创造额外的鲁棒性。我们在一系列表示的学习任务上测试了我们的方法,包括建模物理动态和凸形肖像以及对自动驾驶汽车的安全避免碰撞。

We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constrained parameters/inputs both during training and inference. Moreover, we demonstrate that our invariance set propagation through data-controlled neural ODEs not only maintains generalization performance but also creates an additional degree of robustness by enabling causal manipulation of the system's parameters/inputs. We test our method on a series of representation learning tasks, including modeling physical dynamics and convexity portraits, as well as safe collision avoidance for autonomous vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源