论文标题

双曲线随机部分微分方程的溶液的Malliavin可不同性,不规则漂移

Malliavin differentiability of solutions of hyperbolic stochastic partial differential equations with irregular drifts

论文作者

Bogso, Antoine-Marie, Pamen, Olivier Menoukeu

论文摘要

当漂移系数是两个组合单调的单调硼孔的差异时,我们证明了对双曲线随机部分微分方程的解决方案的路径唯一性。然后,由布朗尼纸驱动的SDE的Yamada-Watanabe原理允许对这种方程式获得强大的独特性,从而扩展了[Bogso,Dieye和Menoukeu Pamen,Elect的结果。 J. Probab。,27:1-26,2022]和[Nualart和Tindel,潜在的肛门,7(3):661---680,1997]。假设漂移是全球界限的,我们表明独特的强溶液是Malliavin可区分的。还研究了空间线性生长漂移系数的情况。

We prove path-by-path uniqueness of solution to hyperbolic stochastic partial differential equations when the drift coefficient is the difference of two componentwise monotone Borel measurable functions of spatial linear growth. The Yamada-Watanabe principle for SDE driven by Brownian sheet then allows to derive strong uniqueness for such equation and thus extending the results in [Bogso, Dieye and Menoukeu Pamen, Elect. J. Probab., 27:1-26, 2022] and [Nualart and Tindel, Potential Anal., 7(3):661--680, 1997]. Assuming that the drift is globally bounded, we show that the unique strong solution is Malliavin differentiable. The case of spatial linear growth drift coefficient is also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源