论文标题

边缘结构模型的灵敏度分析

Sensitivity Analysis for Marginal Structural Models

论文作者

Bonvini, Matteo, Kennedy, Edward, Ventura, Valerie, Wasserman, Larry

论文摘要

我们介绍了几种评估对边际结构模型中未衡量混杂的敏感性的方法;重要的是,我们允许治疗是离散或连续,静态或时间变化的。我们考虑了三个灵敏度模型:基于倾向的模型,基于结果的模型和一个子集混杂模型,其中只有一小部分人口受到无法衡量的混杂。在每种情况下,我们都会为因果参数的边界开发有效的估计器和置信区间。

We introduce several methods for assessing sensitivity to unmeasured confounding in marginal structural models; importantly we allow treatments to be discrete or continuous, static or time-varying. We consider three sensitivity models: a propensity-based model, an outcome-based model, and a subset confounding model, in which only a fraction of the population is subject to unmeasured confounding. In each case we develop efficient estimators and confidence intervals for bounds on the causal parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源