论文标题
完全非线性的重力不稳定性,以不均匀的压力和熵扩展牛顿宇宙:超越托尔曼的解决方案
Fully nonlinear gravitational instabilities for expanding Newtonian universes with inhomogeneous pressure and entropy: Beyond the Tolman's solution
论文作者
论文摘要
非线性引力不稳定性是理解物质聚类和宇宙和恒星系统中非线性结构的形成的关键方法。但是,除了一些针对无压力物质的确切特定解决方案外,只有一些近似值以及数值和现象学方法可以研究非线性重力不稳定性,而不是数学上严格的分析。我们构建了Euler-Poisson系统的特定解决方案的家族,该家族在扩展的牛顿宇宙中表现出具有不均匀压力和熵(即冷中心和热边缘)的非均匀压力和熵的物质的不稳定性。尽管密度扰动是均匀的,但压力却没有,从而产生明显的非线性效应。通过利用我们先前在非线性分析中对一类微分方程的非线性分析\ cite {liu2022b},我们估计密度对比的增长率大约是$ \ sim \ exp(t^{\ frac {2} {2} {3}}} {3}})$,比经典的linear lineal lineal instoby($ sim)instoby( t^{\ frac {2} {3}} $)。我们建造这种解决方案家族的主要动机是提供参考解决方案家族,以对密度对比度不均匀扰动进行完全非均质的分析。我们将在数学文章\ cite {liu2023b}中分别介绍一般结果。此外,我们强调的是,我们的模型在质量积聚奇点之前没有任何具有壳的奇异性,因为我们特别有兴趣分析纯质量积聚模型的数学力学,这对我们的模型对理解现实的非线性结构形成的适用性产生了限制。
Nonlinear gravitational instability is a crucial way to comprehend the clustering of matter and the formation of nonlinear structures in both the Universe and stellar systems. However, with the exception of a few exact particular solutions for pressureless matter, there are only some approximations and numerical and phenomenological approaches to study the nonlinear gravitational instability instead of mathematically rigorous analysis. We construct a family of particular solutions of the Euler-Poisson system that exhibits the nonlinear gravitational instability of matter with inhomogeneous pressure and entropy (i.e., the cold center and hot rim) in the expanding Newtonian universe. Despite the density perturbations being homogeneous, the pressure is not, resulting in significant nonlinear effects. By making use of our prior work on nonlinear analysis of a class of differential equations \cite{Liu2022b}, we estimate that the growth rate of the density contrast is approximately $\sim \exp(t^{\frac{2}{3}})$, much faster than the growth rate anticipated by classical linear Jeans instability ($\sim t^{\frac{2}{3}}$). Our main motivation for constructing this family of solutions is to provide a family of reference solutions for conducting a fully nonlinear analysis of inhomogeneous perturbations of density contrast. We will present the general results in a mathematical article \cite{Liu2023b} separately. Additionally, we emphasize that our model does not feature any shell-crossing singularities before mass accretion singularities since we are specifically interested in analyzing the mathematical mechanics of a pure mass accretion model, which poses limitations on the applicability of our model for understanding the realistic nonlinear structure formation.