论文标题

FADIN:用一般参数内核快速离散的霍克斯工艺推断

FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels

论文作者

Staerman, Guillaume, Allain, Cédric, Gramfort, Alexandre, Moreau, Thomas

论文摘要

时间点过程(TPP)是建模基于事件的数据的天然工具。在所有TPP模型中,Hawkes流程已被证明是最广泛使用的,这主要是由于它们针对各种应用程序进行了足够的建模,尤其是在考虑指数或非参数内核时。尽管非参数内核是一种选择,但此类型号需要大型数据集。尽管指数内核更有效地数据效率,并且与事件立即触发更多事件的特定应用程序相关,但它们不适合需要估算潜伏期的应用,例如在神经科学中。这项工作旨在使用有限支持的一般参数内核提供有效的解决方案来推理TPP推理。开发的解决方案由一个快速$ \ ell_2 $基于梯度的求解器组成,该求解器利用该事件的离散版本。从理论上支持离散化的使用后,通过各种数值实验证明了新方法的统计和计算效率。最后,通过建模具有磁脑摄影(MEG)记录的脑信号的刺激诱导的模式的发生来评估该方法的有效性。考虑到一般参数核的使用,结果表明,所提出的方法比最新的方法可以改善模式延迟的估计。

Temporal point processes (TPP) are a natural tool for modeling event-based data. Among all TPP models, Hawkes processes have proven to be the most widely used, mainly due to their adequate modeling for various applications, particularly when considering exponential or non-parametric kernels. Although non-parametric kernels are an option, such models require large datasets. While exponential kernels are more data efficient and relevant for specific applications where events immediately trigger more events, they are ill-suited for applications where latencies need to be estimated, such as in neuroscience. This work aims to offer an efficient solution to TPP inference using general parametric kernels with finite support. The developed solution consists of a fast $\ell_2$ gradient-based solver leveraging a discretized version of the events. After theoretically supporting the use of discretization, the statistical and computational efficiency of the novel approach is demonstrated through various numerical experiments. Finally, the method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG). Given the use of general parametric kernels, results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源