论文标题
直线施坦纳林森林树木的问题
The Rectilinear Steiner Forest Arborescence problem
论文作者
论文摘要
让$ r $成为平面$ \ mathbb {r}^2 $的第一个象限$ q_1 $,而让$ p \ subset q_1 $是一组点,以至于对于p $中的任何$ p \,其$ x $ - 和$ y $ - $ $ - $ - $ -Coortion至少为$ r $。 root $ r $的直线线施剂树木是$ p $,是$ p \ p \ cup \ {r \} $的直线施剂树$ t $,以至于每个点$ p \ in p $,$ p $ in $ p $ to $ p $ to lot $ r $ r $ r $ r $ qual $ r $ quals $(unique)路径的长度x}(r))+({\ rm y}(p)) - ({\ rm y}(r))$,其中$ {\ rm x}(q)$和$ {\ rm y}(q)$分别表示$ x $ - 和$ x $ - 和$ y $ - coordic,分别为point $ q \ q point $ q \ IN Given two point sets $P$ and $R$ lying in the first quadrant $Q_1$ and such that $(0,0) \in R$, the Rectilinear Steiner Forest Arborescence (RSFA) problem is to find the minimum-length spanning forest $F$ such that each connected component $F$ is a rectilinear Steiner arborescence rooted at some root in $R$. RSFA问题是对直线施坦纳树木的自然概括,其中$ r = \ {(0,0)\} $,因此是NP-HARD。在本文中,我们为RSFA问题提供了一种简单的精确指数时间算法,设计多项式时间近似方案以及固定参数算法。
Let $r$ be a point in the first quadrant $Q_1$ of the plane $\mathbb{R}^2$ and let $P \subset Q_1$ be a set of points such that for any $p \in P$, its $x$- and $y$-coordinate is at least as that of $r$. A rectilinear Steiner arborescence for $P$ with the root $r$ is a rectilinear Steiner tree $T$ for $P \cup \{r\}$ such that for each point $p \in P$, the length of the (unique) path in $T$ from $p$ to the root $r$ equals $({\rm x}(p)-{\rm x}(r))+({\rm y}(p))-({\rm y}(r))$, where ${\rm x}(q)$ and ${\rm y}(q)$ denote the $x$- and $y$-coordinate, respectively, of point $q \in P \cup \{r\}$. Given two point sets $P$ and $R$ lying in the first quadrant $Q_1$ and such that $(0,0) \in R$, the Rectilinear Steiner Forest Arborescence (RSFA) problem is to find the minimum-length spanning forest $F$ such that each connected component $F$ is a rectilinear Steiner arborescence rooted at some root in $R$. The RSFA problem is a natural generalization of the Rectilinear Steiner Arborescence problem, where $R=\{(0,0)\}$, and thus it is NP-hard. In this paper, we provide a simple exact exponential time algorithm for the RSFA problem, design a polynomial time approximation scheme as well as a fixed-parameter algorithm.