论文标题

无监督的多模式异常检测和本地化的眼神数据集

The Eyecandies Dataset for Unsupervised Multimodal Anomaly Detection and Localization

论文作者

Bonfiglioli, Luca, Toschi, Marco, Silvestri, Davide, Fioraio, Nicola, De Gregorio, Daniele

论文摘要

我们提出了Eyecandies,这是一种新型的合成数据集,用于无监督的异常检测和定位。在多个闪电条件下,在受控的环境中呈现程序生成的糖果的照片现实图像,在工业传送带方案中也提供了深度和正常地图。我们提供无异常的样本进行模型培训和验证,而仅在测试集中提供具有精确地面真相注释的异常实例。数据集包括十类糖果,每种糖果都表现出不同的挑战,例如复杂的纹理,自clus和镜面。此外,我们通过随机绘制程序性渲染管道的关键参数来实现较大的类内变化,从而可以创建具有光真实外观的任意数量的实例。同样,将异常注入渲染图中,并自动生成像素的注释,克服人类偏见和可能的不一致。 我们认为,该数据集可能会鼓励探索原始方法来解决异常检测任务,例如通过将颜色,深度和正常地图结合在一起,因为它们没有由大多数现有数据集提供。确实,为了证明利用其他信息实际上可能导致更高的检测性能,我们通过训练深层卷积自动编码器来重建输入的不同组合,从而显示了获得的结果。

We present Eyecandies, a novel synthetic dataset for unsupervised anomaly detection and localization. Photo-realistic images of procedurally generated candies are rendered in a controlled environment under multiple lightning conditions, also providing depth and normal maps in an industrial conveyor scenario. We make available anomaly-free samples for model training and validation, while anomalous instances with precise ground-truth annotations are provided only in the test set. The dataset comprises ten classes of candies, each showing different challenges, such as complex textures, self-occlusions and specularities. Furthermore, we achieve large intra-class variation by randomly drawing key parameters of a procedural rendering pipeline, which enables the creation of an arbitrary number of instances with photo-realistic appearance. Likewise, anomalies are injected into the rendering graph and pixel-wise annotations are automatically generated, overcoming human-biases and possible inconsistencies. We believe this dataset may encourage the exploration of original approaches to solve the anomaly detection task, e.g. by combining color, depth and normal maps, as they are not provided by most of the existing datasets. Indeed, in order to demonstrate how exploiting additional information may actually lead to higher detection performance, we show the results obtained by training a deep convolutional autoencoder to reconstruct different combinations of inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源