论文标题

低成本陀螺仪中基于学习的消除偏见的方法

A Learning-based approach for bias elimination in low cost gyroscopes

论文作者

Engelsman, Daniel, Klein, Itzik

论文摘要

现代传感器在许多操作平台中都起着关键作用,因为它们设法以相对较低的制造成本跟踪平台动态。可以从自动驾驶汽车,战术平台开始发现它们的广泛使用,并以日常使用的家用电器结束。离开工厂后,校准的传感器开始积累不同的误差源,这些错误源逐渐磨损其精度和可靠性。为此,需要定期校准,以恢复固有参数并用地面真理重新调整其读数。尽管文献中存在广泛的分析方法,但使用数据驱动的技术及其前所未有的近似功能提出了很少的提出。在这项研究中,我们展示了如何使用独特的卷积神经网络结构在较短的手术时间内进行低成本陀螺仪中的消除。传统方法的严格限制被基于学习的回归所取代,该回归避免了时间耗时的平均时间,从而表现出对实际偏见的有效筛分。

Modern sensors play a pivotal role in many operating platforms, as they manage to track the platform dynamics at a relatively low manufacturing costs. Their widespread use can be found starting from autonomous vehicles, through tactical platforms, and ending with household appliances in daily use. Upon leaving the factory, the calibrated sensor starts accumulating different error sources which slowly wear out its precision and reliability. To that end, periodic calibration is needed, to restore intrinsic parameters and realign its readings with the ground truth. While extensive analytic methods exist in the literature, little is proposed using data-driven techniques and their unprecedented approximation capabilities. In this study, we show how bias elimination in low-cost gyroscopes can be performed in considerably shorter operative time, using a unique convolutional neural network structure. The strict constraints of traditional methods are replaced by a learning-based regression which spares the time-consuming averaging time, exhibiting efficient sifting of background noise from the actual bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源