论文标题

采取高效且风险意识的策略,以指导农民确定最佳作物管理

Towards an efficient and risk aware strategy for guiding farmers in identifying best crop management

论文作者

Gautron, Romain, Baudry, Dorian, Adam, Myriam, Falconnier, Gatien N, Corbeels, Marc

论文摘要

在与现场试验的一系列对比实践中确定最佳性能施肥实践是具有挑战性的,因为农作物的损失对于农民来说是昂贵的。为了确定最佳管理实践,“直觉策略”将是设定每种实践中相同比例进行测试的多年野外试验。我们的目标是使用强盗算法提供识别策略,该算法与“直觉策略”相比,可以更好地最大程度地减少识别期间农民的损失。我们使用了对农业技术转移(DSSAT)作物模型的决策支持系统的修改来模仿现场试验反应,并在马里南部进行了案例研究。我们使用风险感知度量,有条件的危险价值(CVAR)和一种新颖的农艺指标(YE)比较了肥料实践。你们既说出谷物产量和农艺性氮的使用效率。强盗算法的表现要比直观策略要好:在大多数情况下,农民对最坏情况的保护增加了。这项研究是一个方法论上的一步,为在实际条件下对形成鲜明的作物管理实践的表现开辟了新的视野。

Identification of best performing fertilizer practices among a set of contrasting practices with field trials is challenging as crop losses are costly for farmers. To identify best management practices, an ''intuitive strategy'' would be to set multi-year field trials with equal proportion of each practice to test. Our objective was to provide an identification strategy using a bandit algorithm that was better at minimizing farmers' losses occurring during the identification, compared with the ''intuitive strategy''. We used a modification of the Decision Support Systems for Agro-Technological Transfer (DSSAT) crop model to mimic field trial responses, with a case-study in Southern Mali. We compared fertilizer practices using a risk-aware measure, the Conditional Value-at-Risk (CVaR), and a novel agronomic metric, the Yield Excess (YE). YE accounts for both grain yield and agronomic nitrogen use efficiency. The bandit-algorithm performed better than the intuitive strategy: it increased, in most cases, farmers' protection against worst outcomes. This study is a methodological step which opens up new horizons for risk-aware ensemble identification of the performance of contrasting crop management practices in real conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源