论文标题
完全离散的异质多尺度方法,用于具有多个空间和时间尺度的抛物线问题
Fully discrete Heterogeneous Multiscale Method for parabolic problems with multiple spatial and temporal scales
论文作者
论文摘要
这项工作的目的是使用异质的多尺度方法对抛物线问题的数值均质化和空间尺度的数值均匀化。我们使用Dirichlet边界和初始值,而不是周期性的边界和时间条件,用替代问题替换实际的单元问题。此外,我们对宏观和细胞问题的完全离散的空间和时间进行了详细的先验误差分析,即在空间和时间上。数值实验说明了理论收敛速率。
The aim of this work is the numerical homogenization of a parabolic problem with several time and spatial scales using the heterogeneous multiscale method. We replace the actual cell problem with an alternate one, using Dirichlet boundary and initial values instead of periodic boundary and time conditions. Further, we give a detailed a priori error analysis of the fully discretized, i.e., in space and time for both the macroscopic and the cell problem, method. Numerical experiments illustrate the theoretical convergence rates.