论文标题

地平线:高分辨率语义控制的全景合成

HORIZON: High-Resolution Semantically Controlled Panorama Synthesis

论文作者

Yan, Kun, Ji, Lei, Wu, Chenfei, Liang, Jian, Zhou, Ming, Duan, Nan, Ma, Shuai

论文摘要

全景综合努力制造着迷人的360度视觉景观,将用户沉浸在虚拟世界的中心。然而,当代全景合成技术应对语义指导内容生成过程的挑战。尽管最近的视觉合成中的突破已经解锁了2D平面图像中语义控制的潜力,但这些方法将这些方法直接应用于全景合成会导致含量变形。在这项研究中,我们推出了一个创新的框架,用于生成高分辨率全景,通过复杂的球形建模来熟练解决球形失真和边缘不连续性的问题。我们的开创性方法使用户具有语义控制,利用图像和文本输入,同时使用并行解码同时简化高分辨率全景图的生成。我们严格地评估了我们的方法论在各种室内和室外数据集上,就定量和定性性能指标而言,建立了比最近相关工作的优越性。我们的研究将全景合成的可控性,效率和保真度提升到了新的水平。

Panorama synthesis endeavors to craft captivating 360-degree visual landscapes, immersing users in the heart of virtual worlds. Nevertheless, contemporary panoramic synthesis techniques grapple with the challenge of semantically guiding the content generation process. Although recent breakthroughs in visual synthesis have unlocked the potential for semantic control in 2D flat images, a direct application of these methods to panorama synthesis yields distorted content. In this study, we unveil an innovative framework for generating high-resolution panoramas, adeptly addressing the issues of spherical distortion and edge discontinuity through sophisticated spherical modeling. Our pioneering approach empowers users with semantic control, harnessing both image and text inputs, while concurrently streamlining the generation of high-resolution panoramas using parallel decoding. We rigorously evaluate our methodology on a diverse array of indoor and outdoor datasets, establishing its superiority over recent related work, in terms of both quantitative and qualitative performance metrics. Our research elevates the controllability, efficiency, and fidelity of panorama synthesis to new levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源