论文标题

通过神经渲染中的静态视频中的自我监督的3D人姿势估计

Self-Supervised 3D Human Pose Estimation in Static Video Via Neural Rendering

论文作者

Schmidtke, Luca, Hou, Benjamin, Vlontzos, Athanasios, Kainz, Bernhard

论文摘要

从2D图像中推断出3D人的姿势是计算机视觉领域中的一个具有挑战性且长期存在的问题,其中包括运动和医学的运动捕获,虚拟现实,监视或步态分析。我们为一种方法提供了一种估计包含一个人和静态背景的2D视频姿势的方法的初步结果,而无需任何手动地标注释。我们通过制定一个简单而有效的自学任务来实现这一目标:我们的模型需要从另一个时间点重建视频的随机框架,并构建一个转换后的人形模板的渲染图像。至关重要的是,为了优化,我们的基于射线铸造的渲染管道是完全可区分的,仅基于重建任务才能终端训练。

Inferring 3D human pose from 2D images is a challenging and long-standing problem in the field of computer vision with many applications including motion capture, virtual reality, surveillance or gait analysis for sports and medicine. We present preliminary results for a method to estimate 3D pose from 2D video containing a single person and a static background without the need for any manual landmark annotations. We achieve this by formulating a simple yet effective self-supervision task: our model is required to reconstruct a random frame of a video given a frame from another timepoint and a rendered image of a transformed human shape template. Crucially for optimisation, our ray casting based rendering pipeline is fully differentiable, enabling end to end training solely based on the reconstruction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源