论文标题

使用六边形格的组合物列出石墨烯中稳定的纳米孔及其几何特性

Enumerating Stable Nanopores in Graphene and their Geometrical Properties Using the Combinatorics of Hexagonal Lattices

论文作者

Thomas, Sneha, Silmore, Kevin S., Rajan, Ananth Govind

论文摘要

包括石墨烯在内的二维(2D)材料中的纳米孔可用于多种应用,例如气体分离,水生化和DNA测序。然而,到目前为止,尚未列举石墨烯纳米孔的所有合理异构形状。取而代之的是,由于空位的大小增加,纳米孔数量的指数增加,因此已经遵循了一种概率方法来预测2D材料中的纳米孔形状。例如,当去除n = 6个原子时,有12个可能的异构体,当从石墨烯晶格中除去n = 20个原子时,理论上将这个数字增加到1170万。稳定纳米孔形状的较小,详尽的数据集的开发可以帮助未来的实验和理论研究,重点是在各种应用中使用纳米多孔2D材料。在这项工作中,我们使用2D三角“晶格动物”的理论来创建所有稳定的石墨烯纳米形状的库,这些库基于对多形式的数学组合学中众所周知的算法的修改,称为Redelmeier的算法。我们表明,石墨烯纳米孔和三角形多形式(称为polyiamonds)以及六边形多形式(称为polyhexes)之间存在对应关系。我们开发了polyiamond ID的概念来识别独特的纳米异构体。我们还使用来自Polyiamond和Polyhex几何形状的概念来消除含有悬空原子,键和部分的不稳定纳米孔。这种不稳定的纳米孔的排除导致可能的纳米孔从n = 20的1,170万减少到只有0.184亿纳米孔,从而表明稳定的纳米孔的数量几乎低两个数量级,并且更易于拖动。不仅如此,通过提取polyhex概述,我们的算法允许在指定范围内搜索具有尺寸和形状因子的纳米孔。

Nanopores in two-dimensional (2D) materials, including graphene, can be used for a variety of applications, such as gas separations, water desalination, and DNA sequencing. So far, however, all plausible isomeric shapes of graphene nanopores have not been enumerated. Instead, a probabilistic approach has been followed to predict nanopore shapes in 2D materials, due to the exponential increase in the number of nanopores as the size of the vacancy increases. For example, there are 12 possible isomers when N=6 atoms are removed, a number that theoretically increases to 11.7 million when N=20 atoms are removed from the graphene lattice. The development of a smaller, exhaustive dataset of stable nanopore shapes can help future experimental and theoretical studies focused on using nanoporous 2D materials in various applications. In this work, we use the theory of 2D triangular "lattice animals" to create a library of all stable graphene nanopore shapes based on a modification of a well-known algorithm in the mathematical combinatorics of polyforms known as Redelmeier's algorithm. We show that there exists a correspondence between graphene nanopores and triangular polyforms (called polyiamonds) as well as hexagonal polyforms (called polyhexes). We develop the concept of a polyiamond ID to identify unique nanopore isomers. We also use concepts from polyiamond and polyhex geometry to eliminate unstable nanopores containing dangling atoms, bonds, and moieties. The exclusion of such unstable nanopores leads to a remarkable reduction in the possible nanopores from 11.7 million for N=20 to only 0.184 million nanopores, thereby indicating that the number of stable nanopores is almost two orders of magnitude lower and is much more tractable. Not only that, by extracting the polyhex outline, our algorithm allows searching for nanopores with dimensions and shape factors in a specified range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源