论文标题

加权伯瓦尔德的不平等

Weighted Berwald's Inequality

论文作者

Langharst, Dylan, Putterman, Eli

论文摘要

伯瓦尔德的不平等是一种反向 - hölder,例如$ p $ th平均值的不平等,$ p \ in(-1,\ infty),$的$ p \ in(-1,\ infty),$的$ the $ \ mathbb {r}^n。$ \ mathbb {r}^n。$ n。$ conteve berwald的情况,我们对函数的等式进行了等值,以供您使用的情况。 $ s $ -concave度量,$ s \ in \ mathbb {r}。$我们还获得平等条件;特别是,这为伯瓦尔德经典不平等的平等条件提供了新的证据。作为应用,我们概括了许多经典的边界,以衡量凸体与半空间的交点,以及径向含义物体的概念和凸体的投射体。

The inequality of Berwald is a reverse-Hölder like inequality for the $p$th average, $p\in (-1,\infty),$ of a non-negative, concave function over a convex body in $\mathbb{R}^n.$ We prove Berwald's inequality for averages of functions with respect to measures that have some concavity conditions, e.g. $s$-concave measures, $s\in \mathbb{R}.$ We also obtain equality conditions; in particular, this provides a new proof for the equality conditions of the classical inequality of Berwald. As applications, we generalize a number of classical bounds for the measure of the intersection of a convex body with a half-space and also the concept of radial means bodies and the projection body of a convex body.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源