论文标题
关于在三孔到三孔相变的四孔问题的刚性
On Rigidity for the Four-Well Problem Arising in the Cubic-to-Trigonal Phase Transformation
论文作者
论文摘要
我们将所有准确的无压力溶液分类为几何线性化弹性理论中的立方到三角相变,表明只有简单的层压层和跨越双重结构才能发生。特别是,我们证明,尽管这种转换与立方对正常相变密切相关,但其所有解决方案都是刚性的。该论点依赖于圣人兼容性条件以及菌株成分满足的基本非线性关系和非凸度条件的结合。
We classify all exactly stress-free solutions to the cubic-to-trigonal phase transformation within the geometrically linearized theory of elasticity, showing that only simple laminates and crossing-twin structures can occur. In particular, we prove that although this transformation is closely related to the cubic-to-orthorhombic phase transformation, all its solutions are rigid. The argument relies on a combination of the Saint-Venant compatibility conditions together with the underlying nonlinear relations and non-convexity conditions satisfied by the strain components.