论文标题
通过位置尖峰神经元提升事件驱动的触觉学习
Boost Event-Driven Tactile Learning with Location Spiking Neurons
论文作者
论文摘要
触觉感应对于各种日常任务至关重要。事件驱动的触觉传感器和尖峰神经网络(SNN)的最新进展刺激了相关领域的研究。但是,由于现有的尖峰神经元的表现能力有限,并且在事件驱动的触觉数据中,因此以SNN为基础的事件驱动的触觉学习仍处于起步阶段。在本文中,为了提高现有尖峰神经元的表示能力,我们提出了一种名为“位置尖峰神经元”的新型神经元模型,该模型使我们能够以新颖的方式提取基于事件的数据的特征。具体而言,基于经典时间峰值响应模型(TSRM),我们开发了位置尖峰响应模型(LSRM)。此外,基于最常用的时间泄漏的集成和火力(TLIF)模型,我们开发了位置泄漏的集成和火力(LLIF)模型。此外,为了证明我们提出的神经元的表示有效性,并在事件驱动的触觉数据中捕获了复杂的时空依赖性,我们利用位置尖峰神经元提出了两个混合模型,以进行事件驱动的触觉学习。具体而言,第一个混合模型将完全连接的SNN与TSRM神经元和LSRM神经元完全连接的SNN结合在一起。第二种混合模型将空间尖峰图神经网络与TLIF神经元和具有LLIF神经元的时间尖峰图神经网络融合在一起。广泛的实验证明了我们模型对事件驱动的触觉学习的最新方法的重大改进。此外,与对手人工神经网络(ANN)相比,我们的SNN型号为10倍至100倍节能,这显示了我们模型的卓越能源效率,并可能为基于Spike的学习社区和神经形态工程带来新的机会。
Tactile sensing is essential for a variety of daily tasks. And recent advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal complexity in the event-driven tactile data. In this paper, to improve the representation capability of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Specifically, based on the classical Time Spike Response Model (TSRM), we develop the Location Spike Response Model (LSRM). In addition, based on the most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the representation effectiveness of our proposed neurons and capture the complex spatio-temporal dependencies in the event-driven tactile data, we exploit the location spiking neurons to propose two hybrid models for event-driven tactile learning. Specifically, the first hybrid model combines a fully-connected SNN with TSRM neurons and a fully-connected SNN with LSRM neurons. And the second hybrid model fuses the spatial spiking graph neural network with TLIF neurons and the temporal spiking graph neural network with LLIF neurons. Extensive experiments demonstrate the significant improvements of our models over the state-of-the-art methods on event-driven tactile learning. Moreover, compared to the counterpart artificial neural networks (ANNs), our SNN models are 10x to 100x energy-efficient, which shows the superior energy efficiency of our models and may bring new opportunities to the spike-based learning community and neuromorphic engineering.