论文标题

回忆的伊辛电路

Memristive Ising Circuits

论文作者

Dowling, V. J., Pershin, Y. V.

论文摘要

ISING模型在统计力学领域至关重要。在这里,我们表明,可以在具有内存的随机二进制电阻的定期驱动电路中实现Ising-type相互作用。我们实现的关键特征是两个相邻旋转之间的铁磁和反铁磁相互作用的同时共存 - 自然界中不可用的非凡特性。我们证明,电路状态的统计数据可能完全匹配具有铁磁或反铁磁相互作用的Ising模型中的统计数据,并且重要的是,可以从电路状态的概率中提取相应的ISING模型参数。使用此发现,在几种模型情况下重新构建了Ising Hamiltonian,并且表明可以在随机回忆录的电路中实现不同类型的相互作用。

The Ising model is of prime importance in the field of statistical mechanics. Here we show that Ising-type interactions can be realized in periodically-driven circuits of stochastic binary resistors with memory. A key feature of our realization is the simultaneous co-existence of ferromagnetic and antiferromagnetic interactions between two neighboring spins -- an extraordinary property not available in nature. We demonstrate that the statistics of circuit states may perfectly match the ones found in the Ising model with ferromagnetic or antiferromagnetic interactions, and, importantly, the corresponding Ising model parameters can be extracted from the probabilities of circuit states. Using this finding, the Ising Hamiltonian is re-constructed in several model cases, and it is shown that different types of interaction can be realized in circuits of stochastic memristors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源