论文标题
相关信息最大化基于生物学上合理的神经网络,用于相关源分离
Correlative Information Maximization Based Biologically Plausible Neural Networks for Correlated Source Separation
论文作者
论文摘要
大脑毫不费力地提取了刺激的潜在原因,但是在网络级别上如何做到这一点仍然未知。大多数先前在此问题上提出了实施独立组件分析的神经网络,该神经网络在潜在原因是相互独立的限制下起作用。在这里,我们放宽了这一限制,并提出了一个具有生物学上合理的神经网络,该神经网络通过利用有关其域的信息来提取相关的潜在来源。为了得出该网络,我们选择了从输入到输出的最大相关信息传输,作为在输出仅限于其假定集合的约束下的分离目标。这种优化问题的在线表述自然会导致具有本地学习规则的神经网络。我们的框架包含了无限的许多源域选择,并灵活地对复杂的潜在结构进行建模。单纯形或多重源域的选择会导致具有分段线性激活函数的网络。我们提供数值示例,以证明合成和自然源的优质相关源分离能力。
The brain effortlessly extracts latent causes of stimuli, but how it does this at the network level remains unknown. Most prior attempts at this problem proposed neural networks that implement independent component analysis which works under the limitation that latent causes are mutually independent. Here, we relax this limitation and propose a biologically plausible neural network that extracts correlated latent sources by exploiting information about their domains. To derive this network, we choose maximum correlative information transfer from inputs to outputs as the separation objective under the constraint that the outputs are restricted to their presumed sets. The online formulation of this optimization problem naturally leads to neural networks with local learning rules. Our framework incorporates infinitely many source domain choices and flexibly models complex latent structures. Choices of simplex or polytopic source domains result in networks with piecewise-linear activation functions. We provide numerical examples to demonstrate the superior correlated source separation capability for both synthetic and natural sources.