论文标题

域概括的注意力多样化

Attention Diversification for Domain Generalization

论文作者

Meng, Rang, Li, Xianfeng, Chen, Weijie, Yang, Shicai, Song, Jie, Wang, Xinchao, Zhang, Lei, Song, Mingli, Xie, Di, Pu, Shiliang

论文摘要

卷积神经网络(CNN)在学习判别特征方面表现出令人欣慰的结果。但是,当应用于看不见的域时,最先进的模型通常容易出现由于域移动而导致的错误。从快捷方式学习的角度研究了这个问题之后,我们发现魔鬼在于一个事实,即在不同领域训练的模型仅偏向于不同领域的特定功能,但却忽略了与任务相关的多样化功能。在此指南下,提出了一个新颖的注意力多样化框架,其中模型和模型间注意力多样性正规化是协作的,以重新分配对与任务相关的各种功能的适当关注。简而言之,模型内注意力多样化的正则正规化配备了高级特征图,以实现渠道内歧视和跨渠道多样性,这是通过强迫不同的渠道对不同空间位置的最大关注。此外,提出了模型间注意力多样化的正则化,以进一步提供与任务相关的注意力多样化和与领域相关的注意力抑制,这是“模拟,分裂和组装”的范式:通过利用多个领域特异性模型,将注意力图映射到任务相关和域中的组中,并在每个组中分配了与范围的组合,并在每个组中分别进行定期化。在各种基准上进行了广泛的实验和分析,以证明我们的方法比其他竞争方法实现了最先进的性能。代码可从https://github.com/hikvision-research/domaingeneralization获得。

Convolutional neural networks (CNNs) have demonstrated gratifying results at learning discriminative features. However, when applied to unseen domains, state-of-the-art models are usually prone to errors due to domain shift. After investigating this issue from the perspective of shortcut learning, we find the devils lie in the fact that models trained on different domains merely bias to different domain-specific features yet overlook diverse task-related features. Under this guidance, a novel Attention Diversification framework is proposed, in which Intra-Model and Inter-Model Attention Diversification Regularization are collaborated to reassign appropriate attention to diverse task-related features. Briefly, Intra-Model Attention Diversification Regularization is equipped on the high-level feature maps to achieve in-channel discrimination and cross-channel diversification via forcing different channels to pay their most salient attention to different spatial locations. Besides, Inter-Model Attention Diversification Regularization is proposed to further provide task-related attention diversification and domain-related attention suppression, which is a paradigm of "simulate, divide and assemble": simulate domain shift via exploiting multiple domain-specific models, divide attention maps into task-related and domain-related groups, and assemble them within each group respectively to execute regularization. Extensive experiments and analyses are conducted on various benchmarks to demonstrate that our method achieves state-of-the-art performance over other competing methods. Code is available at https://github.com/hikvision-research/DomainGeneralization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源