论文标题

通用对象应该是什么?

What should a generic object be?

论文作者

Sterling, Jonathan

论文摘要

雅各布斯(Jacobs)提出了针对纤维类别的(弱,强,分裂)通用对象的定义;雅各布斯(Jacobs)以其(分裂)通用对象的定义为基础,开发了一个重要的纤维化结构,并应用于分类逻辑和计算机科学,包括高阶纤维,多态性纤维,$λ2$ - 纤维纤维,triposes等。我们观察到,在给定的定义下,拆分通用对象不必特别是一个通用对象,并且多态纤维,三角体等的定义足够严格,可以排除一些基本示例:例如,在这种意义上,由局部组合性代数诱导的纤维纤维预订不是在这种意义上的三种三角。我们提出了一种新的术语一致性,该术语强调了自然界中最常见的通用物体的形式,即在内部类别,triposes和多态性的典型语义的研究中。此外,我们提出了一类新的无环通用对象,灵感来自高等类别理论的最新发展和同型类型理论的语义,将宇宙的重组属性推广到设定任意振动的设置。

Jacobs has proposed definitions for (weak, strong, split) generic objects for a fibered category; building on his definition of (split) generic objects, Jacobs develops a menagerie of important fibrational structures with applications to categorical logic and computer science, including higher order fibrations, polymorphic fibrations, $λ2$-fibrations, triposes, and others. We observe that a split generic object need not in particular be a generic object under the given definitions, and that the definitions of polymorphic fibrations, triposes, etc. are strict enough to rule out some fundamental examples: for instance, the fibered preorder induced by a partial combinatory algebra in realizability is not a tripos in this sense. We propose a new alignment of terminology that emphasizes the forms of generic object appearing most commonly in nature, i.e. in the study of internal categories, triposes, and the denotational semantics of polymorphism. In addition, we propose a new class of acyclic generic objects inspired by recent developments in higher category theory and the semantics of homotopy type theory, generalizing the realignment property of universes to the setting of an arbitrary fibration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源