论文标题
预测与图神经网络的流体结构相互作用
Predicting fluid-structure interaction with graph neural networks
论文作者
论文摘要
我们提出了一个旋转模棱两可的准空石图形神经网络框架,用于降低流体结构相互作用系统的订购建模。借助任意的拉格朗日 - 欧拉群岛的表述,系统状态通过两个子网络暂时进化。网格的运动通过复杂值的正交分解将几个系数的演变降低到几个系数的演变,并且随着时间的推移,这些系数的预测由单个多层感知器处理。采用有限元启发的超图神经网络来根据整个系统的状态来预测流体状态的演变。结构状态是由网格在固体界面上的运动隐式建模的。因此,它使提出的框架准石器时代。在两个典型的流体结构系统上评估了所提出的框架的有效性,即围绕弹性安装的圆柱体的流量,以及附着在固定缸上的高弹性板周围的流动。所提出的框架跟踪接口描述,并在推出至少2000个时间步长期间提供稳定,准确的系统状态预测,甚至在自我校正错误的错误预测中表现出一定的能力。与现有的基于卷积的架构相比,提出的框架还可以使用预测的流体和网状状态直接计算升力和阻力力。提出的通过图神经网络的减少阶模型对基于物理的数字双胞胎的开发对移动边界和流体结构相互作用具有影响。
We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling of fluid-structure interaction systems. With the aid of an arbitrary Lagrangian-Eulerian formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition, and the prediction of these coefficients over time is handled by a single multi-layer perceptron. A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid-fluid interface; hence it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid-structure systems, namely the flow around an elastically-mounted cylinder, and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps, and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid-structure interactions.