论文标题

Galaxy Spin分类I:Z-Wise vs S Wise Spirals具有手性均衡性残留网络

Galaxy Spin Classification I: Z-wise vs S-wise Spirals With Chirality Equivariant Residual Network

论文作者

Jia, He, Zhu, Hong-Ming, Pen, Ue-Li

论文摘要

星系的角动量(星系旋转)包含有关宇宙初始状况的丰富信息,但是有效地测量由正在进行和即将发生的宇宙学曲线绘制的大量星系的自旋方向是挑战。我们提出了一个基于机器学习的分类器,用于Z-Wise vs s Wise螺旋,这可以帮助破坏银河系旋转方向测量的变性。在输入图像的反射下,所提出的手性均衡性残留网络(CE-RESNET)显然是均等的,这可以确保Z-Wise和S-Wise概率估计器之间没有固有的不对称性。我们使用Sloan Digital Sky Survey(SDSS)图像训练该模型,并带有Galaxy Zoo 1(GZ1)项目给出的培训标签。在培训期间,使用了数据增强技巧的组合,使该模型更加可靠,可以应用于其他调查。由于DESI的成像质量更好,因此我们发现两种类型的螺旋形成两种类型螺旋的$ \ sim \!30 \%$增加。我们验证Z WISE和S WISE螺旋的数量之间的$ \ SIM \!7σ$差异是由于人类偏见所致,因为差异下降到$ <\!1.8σ$,而我们的CE-Resnet分类结果。我们讨论与未来宇宙学应用相关的潜在系统学。

The angular momentum of galaxies (galaxy spin) contains rich information about the initial condition of the Universe, yet it is challenging to efficiently measure the spin direction for the tremendous amount of galaxies that are being mapped by the ongoing and forthcoming cosmological surveys. We present a machine learning based classifier for the Z-wise vs S-wise spirals, which can help to break the degeneracy in the galaxy spin direction measurement. The proposed Chirality Equivariant Residual Network (CE-ResNet) is manifestly equivariant under a reflection of the input image, which guarantees that there is no inherent asymmetry between the Z-wise and S-wise probability estimators. We train the model with Sloan Digital Sky Survey (SDSS) images, with the training labels given by the Galaxy Zoo 1 (GZ1) project. A combination of data augmentation tricks are used during the training, making the model more robust to be applied to other surveys. We find a $\sim\!30\%$ increase of both types of spirals when Dark Energy Spectroscopic Instrument (DESI) images are used for classification, due to the better imaging quality of DESI. We verify that the $\sim\!7σ$ difference between the numbers of Z-wise and S-wise spirals is due to human bias, since the discrepancy drops to $<\!1.8σ$ with our CE-ResNet classification results. We discuss the potential systematics that are relevant to the future cosmological applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源