论文标题

部分可观测时空混沌系统的无模型预测

Doubly robust estimation and sensitivity analysis for marginal structural quantile models

论文作者

Cheng, Chao, Hu, Liangyuan, Li, Fan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The marginal structure quantile model (MSQM) provides a unique lens to understand the causal effect of a time-varying treatment on the full distribution of potential outcomes. Under the semiparametric framework, we derive the efficiency influence function for the MSQM, from which a new doubly robust estimator is proposed for point estimation and inference. We show that the doubly robust estimator is consistent if either of the models associated with treatment assignment or the potential outcome distributions is correctly specified, and is semiparametric efficient if both models are correct. To implement the doubly robust MSQM estimator, we propose to solve a smoothed estimating equation to facilitate efficient computation of the point and variance estimates. In addition, we develop a confounding function approach to investigate the sensitivity of several MSQM estimators when the sequential ignorability assumption is violated. Extensive simulations are conducted to examine the finite-sample performance characteristics of the proposed methods. We apply the proposed methods to the Yale New Haven Health System Electronic Health Record data to study the effect of antihypertensive medications to patients with severe hypertension and assess the robustness of findings to unmeasured baseline and time-varying confounding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源