论文标题

分析长瞬变和检测一类捕食者模型中灭绝的预警信号

Analysis of long transients and detection of early warning signals of extinction in a class of predator-prey models exhibiting bistable behavior

论文作者

Sadhu, Susmita, Thakur, Saikat Chakraborty

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we develop a method of analyzing long transient dynamics in a class of predator-prey models with two species of predators competing explicitly for their common prey, where the prey evolves on a faster timescale than the predators. In a parameter regime near a {\em{singular zero-Hopf bifurcation}} of the coexistence equilibrium state, we assume that the system under study exhibits bistability between a periodic attractor that bifurcates from the singular Hopf point and another attractor, which could be a periodic attractor or a point attractor, such that the invariant manifolds of the coexistence equilibrium point play central roles in organizing the dynamics. To find whether a solution that starts in a vicinity of the coexistence equilibrium approaches the periodic attractor or the other attractor, we reduce the equations to a suitable normal form, and examine the basin boundary near the singular Hopf point. A key component of our study includes an analysis of the long transient dynamics, characterized by their rapid oscillations with a slow variation in amplitude, by applying a moving average technique. We obtain a set of necessary and sufficient conditions on the initial values of a solution near the coexistence equilibrium to determine whether it lies in the basin of attraction of the periodic attractor. As a result of our analysis, we devise a method of identifying early warning signals, significantly in advance, of a future crisis that could lead to extinction of one of the predators. The analysis is applied to the predator-prey model considered in [\emph{Discrete and Continuous Dynamical Systems - B} 2021, 26(10), pp. 5251-5279] and we find that our theory is in good agreement with the numerical simulations carried out for this model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源