论文标题
部分可观测时空混沌系统的无模型预测
How do you go where? Improving next location prediction by learning travel mode information using transformers
论文作者
论文摘要
预测个人的下一个访问位置是人类移动分析中的关键问题,因为这是对可持续运输选择的个性化和优化所必需的。在这里,我们提出了一个基于变压器解码器的神经网络,以根据历史位置,时间和旅行模式来预测个人将访问的下一个位置,这些位置是以前工作中经常忽略的行为维度。特别是,对下一个旅行模式的预测被设计为一项辅助任务,以帮助指导网络的学习。为了进行评估,我们将这种方法应用于涉及600多名个人的两个大规模和长期GPS跟踪数据集。我们的实验表明,所提出的方法显着优于其他最先进的下一个位置预测方法的幅度很大(分别为两个数据集的F1分数相对增加8.05%和5.60%)。我们进行了广泛的消融研究,该研究量化了考虑时间特征,旅行模式信息以及对预测结果的辅助任务的影响。此外,当在模型中包括下一个模式预测时,我们通过实验确定性能上限。最后,我们的分析表明,位置预测的性能随着个人选择的下一个旅行模式而差异很大。这些结果表明,在人类流动性预测任务中,更系统地考虑旅行行为的其他维度的潜力。我们的模型和实验的源代码可在https://github.com/mie-lab/location-mode-prediction上获得。
Predicting the next visited location of an individual is a key problem in human mobility analysis, as it is required for the personalization and optimization of sustainable transport options. Here, we propose a transformer decoder-based neural network to predict the next location an individual will visit based on historical locations, time, and travel modes, which are behaviour dimensions often overlooked in previous work. In particular, the prediction of the next travel mode is designed as an auxiliary task to help guide the network's learning. For evaluation, we apply this approach to two large-scale and long-term GPS tracking datasets involving more than 600 individuals. Our experiments show that the proposed method significantly outperforms other state-of-the-art next location prediction methods by a large margin (8.05% and 5.60% relative increase in F1-score for the two datasets, respectively). We conduct an extensive ablation study that quantifies the influence of considering temporal features, travel mode information, and the auxiliary task on the prediction results. Moreover, we experimentally determine the performance upper bound when including the next mode prediction in our model. Finally, our analysis indicates that the performance of location prediction varies significantly with the chosen next travel mode by the individual. These results show potential for a more systematic consideration of additional dimensions of travel behaviour in human mobility prediction tasks. The source code of our model and experiments is available at https://github.com/mie-lab/location-mode-prediction.