论文标题
部分可观测时空混沌系统的无模型预测
Dual-Mode Time Domain Multiplexed Chirp Spread Spectrum
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a dual-mode (DM) time domain multiplexed (TDM) chirp spread spectrum (CSS) modulation for spectral and energy-efficient low-power wide-area networks (LPWANs). DM-CSS modulation that uses both the even and odd cyclic time shifts has been proposed for LPWANs to achieve noteworthy performance improvement over classical counterparts. However, its spectral efficiency (SE) is half of the in-phase and quadrature (IQ)-TDM-CSS scheme that employs IQ components with both up and down chirps, resulting in a SE that is four times relative to Long Range (LoRa) modulation. Nevertheless, the IQ-TDM-CSS scheme only allows coherent detection. Furthermore, it is also sensitive to carrier frequency and phase offsets, making it less practical for low-cost battery-powered LPWANs for Internet-of-Things (IoT) applications. DM-CSS uses either an up-chirp or a down-chirp. DM-TDM-CSS consists of two chirped symbols that are multiplexed in the time domain. One of these symbols consisting of even and odd frequency shifts (FSs) is chirped using an up-chirp. The second chirped symbol also consists of even and odd FSs, but they are chirped using a down-chirp. It shall be demonstrated that DM-TDM-CSS attains a maximum achievable SE close to IQ-TDM-CSS while also allowing both coherent and non-coherent detection. Additionally, unlike IQ-TDM-CSS, DM-TDM-CSS is robust against carrier frequency and phase offsets.