论文标题
部分可观测时空混沌系统的无模型预测
Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness
论文作者
论文摘要
具有准确校准的不确定性的强大机器学习模型对于关键安全应用至关重要。概率的机器学习,尤其是贝叶斯形式主义提供了一个系统的框架,可以通过分配估计和不确定性理由结合鲁棒性。最近的作品表明,将神经网络的重量空间不确定性产生集合预测的近似推理方法是最新的。但是,建筑选择主要是临时的,它基本上忽略了建筑空间中的认知不确定性。为此,我们提出了一个统一的概率架构和权重结构搜索(URAENAS),该搜索利用了概率的神经体系结构搜索和近似贝叶斯推断的发展,以生成合奏,形成了神经网络架构和权重的联合分布。与基线确定性方法相比,提出的方法在分布情况下显示出显着改善(精度为0.86%,ECE为0.86%)CIFAR-10和分布式分布(准确性为2.43%,ECE中为2.43%,ECE中的30%)CIFAR-10-C。
Robust machine learning models with accurately calibrated uncertainties are crucial for safety-critical applications. Probabilistic machine learning and especially the Bayesian formalism provide a systematic framework to incorporate robustness through the distributional estimates and reason about uncertainty. Recent works have shown that approximate inference approaches that take the weight space uncertainty of neural networks to generate ensemble prediction are the state-of-the-art. However, architecture choices have mostly been ad hoc, which essentially ignores the epistemic uncertainty from the architecture space. To this end, we propose a Unified probabilistic architecture and weight ensembling Neural Architecture Search (UraeNAS) that leverages advances in probabilistic neural architecture search and approximate Bayesian inference to generate ensembles form the joint distribution of neural network architectures and weights. The proposed approach showed a significant improvement both with in-distribution (0.86% in accuracy, 42% in ECE) CIFAR-10 and out-of-distribution (2.43% in accuracy, 30% in ECE) CIFAR-10-C compared to the baseline deterministic approach.