论文标题

加权测量代数及其第二双的弱舒适性

Weak amenability of weighted measure algebras and their second duals

论文作者

Mehdipour, M. J., Rejali, A.

论文摘要

在本文中,我们研究了加权度量代数的弱舒适性,并证明$ m(g,ω)$在且仅当$ g $是离散并且每个有界的准添加函数都内部时是微弱的。我们还研究了$ l^1(g,ω)^{**} $和$ m(g,ω)^{**} $的弱舒适性,并表明本文Banach代数的弱舒适性等于$ g $的有限性。这给出了有关$ l^1(g,ω)^{**} $和$ m(g,ω)^{**} $的问题的问题。

In this paper, we study the weak amenability of weighted measure algebras and prove that $M(G, ω)$ is weakly amenable if and only if $G$ is discrete and every bounded quasi-additive function is inner. We also study the weak amenability of $L^1(G, ω)^{**}$ and $M(G, ω)^{**}$ and show that the weak amenability of theses Banach algebras are equivalent to finiteness of $G$. This gives an answer to the question concerning weak amenability of $L^1(G, ω)^{**}$ and $M(G, ω)^{**}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源