论文标题

部分可观测时空混沌系统的无模型预测

A Moving Window Based Approach to Multi-scan Multi-Target Tracking

论文作者

Moratuwage, Diluka, Shim, Changbeom, Punchihewa, Yuthika

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Multi-target state estimation refers to estimating the number of targets and their trajectories in a surveillance area using measurements contaminated with noise and clutter. In the Bayesian paradigm, the most common approach to multi-target estimation is by recursively propagating the multi-target filtering density, updating it with current measurements set at each timestep. In comparison, multi-target smoothing uses all measurements up to current timestep and recursively propagates the entire history of multi-target state using the multi-target posterior density. The recent Generalized Labeled Multi-Bernoulli (GLMB) smoother is an analytic recursion that propagate the labeled multi-object posterior by recursively updating labels to measurement association maps from the beginning to current timestep. In this paper, we propose a moving window based solution for multi-target tracking using the GLMB smoother, so that only those association maps in a window (consisting of latest maps) get updated, resulting in an efficient approximate solution suitable for practical implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源