论文标题

部分可观测时空混沌系统的无模型预测

A Clustering Algorithm for Correlation Quickest Hub Discovery Mixing Time Evolution and Random Matrix Theory

论文作者

Dominguez, Alejandro Rodriguez, Stynes, David

论文摘要

我们提出了最快变化检测(QCD)的几何版本和相关结构中的最快集线器发现(QHD)测试,该测试使我们能够将新信息与距离指标相结合并将新信息结合起来。该主题属于顺序,非参数,高维QCD和QHD的范围,最先进的设置从渐近随机矩阵理论(RMT)开发了全球和局部摘要统计数据,以检测随机矩阵定律的变化。这些设置仅适用于不相关的前变量变量。通过通过聚类进行测试的几何版本,我们可以测试以下假设:我们可以通过同时组合QCD和QHD来改善QHD的最新设置,并包括有关相关性预先进化的信息。我们可以使用相关的前变量变量,并测试相关的时间进化是否可以提高性能。我们证明了基于聚类性能的测试一致性和设计测试假设。我们将此解决方案应用于财务时间序列相关性。关于该主题的未来发展在风险管理,投资组合管理和市场冲击预测中非常相关,这可以为全球经济节省数十亿美元。我们介绍了多元化度量分布(DMD),以建模相关的时间进化,这是单个变量的函数,该函数由与阈值滚动相关性的距离矩阵组成的dirichlet-multinoilsial分布。最后,我们能够验证所有这些假设。

We present a geometric version of Quickest Change Detection (QCD) and Quickest Hub Discovery (QHD) tests in correlation structures that allows us to include and combine new information with distance metrics. The topic falls within the scope of sequential, nonparametric, high-dimensional QCD and QHD, from which state-of-the-art settings developed global and local summary statistics from asymptotic Random Matrix Theory (RMT) to detect changes in random matrix law. These settings work only for uncorrelated pre-change variables. With our geometric version of the tests via clustering, we can test the hypothesis that we can improve state-of-the-art settings for QHD, by combining QCD and QHD simultaneously, as well as including information about pre-change time-evolution in correlations. We can work with correlated pre-change variables and test if the time-evolution of correlation improves performance. We prove test consistency and design test hypothesis based on clustering performance. We apply this solution to financial time series correlations. Future developments on this topic are highly relevant in finance for Risk Management, Portfolio Management, and Market Shocks Forecasting which can save billions of dollars for the global economy. We introduce the Diversification Measure Distribution (DMD) for modeling the time-evolution of correlations as a function of individual variables which consists of a Dirichlet-Multinomial distribution from a distance matrix of rolling correlations with a threshold. Finally, we are able to verify all these hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源