论文标题

两个平方零自偏之间或偏斜的内态性和偏斜的总和

Sums of two square-zero selfadjoint or skew-selfadjoint endomorphisms

论文作者

Pazzis, Clément de Seguins

论文摘要

令$ v $为字段$ \ mathbb {f} $上的有限维矢量空间,配备了对称或交替的非脱位双线性表格$ b $。当$ \ mathbb {f} $的特征不是$ 2 $时,我们表征了$ u $ $ v $的$ u $ u $ u $ u = u = a_1+a_1+a_2 $,对于某些一对$ $(a_1,a_1,a_2)$ b $ -b $ -selpadjoint(分别分别$(a_1)^2 =(a_2)^2 = 0 $。在特征$ 2 $的情况下,我们获得了$ v $的内态性的类似分类,当$ b $交替时,将$ v $的两个平方零$ b $ b $ b $ b $ b $ b $ b $ b $ b $ v $分类为$ v $(每当$ b $ a nevernate)时,每当$ b(x,x,x,x,x,x)= 0 $ x $ x $ x $ x $ x $ x。 Finally, if the field $\mathbb{F}$ is equipped with a non-identity involution, we characterize the pairs $(h,u)$ in which $h$ is a Hermitian form on a finite-dimensional space over $\mathbb{F}$, and $u$ is the sum of two square-zero $h$-selfadjoint endomorphisms.

Let $V$ be a finite-dimensional vector space over a field $\mathbb{F}$, equipped with a symmetric or alternating non-degenerate bilinear form $b$. When the characteristic of $\mathbb{F}$ is not $2$, we characterize the endomorphisms $u$ of $V$ that split into $u=a_1+a_2$ for some pair $(a_1,a_2)$ of $b$-selfadjoint (respectively, $b$-skew-selfadjoint) endomorphisms of $V$ such that $(a_1)^2=(a_2)^2=0$. In the characteristic $2$ case, we obtain a similar classification for the endomorphisms of $V$ that split into the sum of two square-zero $b$-alternating endomorphisms of $V$ when $b$ is alternating (an endomorphism $v$ is called $b$-alternating whenever $b(x,v(x))=0$ for all $x \in V$). Finally, if the field $\mathbb{F}$ is equipped with a non-identity involution, we characterize the pairs $(h,u)$ in which $h$ is a Hermitian form on a finite-dimensional space over $\mathbb{F}$, and $u$ is the sum of two square-zero $h$-selfadjoint endomorphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源