论文标题
在几何有限端和测量层压的光环中的地球平面
Geodesic planes in a geometrically finite end and the halo of a measured lamination
论文作者
论文摘要
最近的作品[MMO1,ARXIV:1802.03853,ARXIV:1802.04423,ARXIV:2101.08956]揭示了地理平面在凸核的拓扑行为中,在几何有限的有限的超级3-manifolds $ M $ M $ M $ M $ M $ M $中。在本文中,我们将重点放在$ m $的凸核之外的剩下的地球飞机案例上,将其封闭式分类为$ m $。 特别是,我们表明这种行为是不同的,具体取决于外来屋顶是否存在。在这里,一个异国屋顶是$ m $的末端$ e $ $ e $中包含的大地测量飞机,它限制了凸核边界$ \ partial e $,但不能通过$ \ partial e $的支撑平面将其与核心分开。 存在外来屋顶的必要条件是弯曲层压的异国情调射线。这里是一种异国情调的射线,它具有有限的交叉数,带有测量的层压$ \ MATHCAL {L} $,但不是任何叶子渐近,也不是任何叶子,也不是与$ \ Mathcal {l} $脱节。我们确定,当且仅当$ \ Mathcal {l} $不是多重的时,就存在异国情调的光芒。证明是建设性的,所涉及的想法在建造外来屋顶方面很重要。 我们还表明,从仅屈曲表面$ \局部E $和弯曲层面的角度来看,地球射线的存在与外来性更强的状态相比,其状况更强,这足以满足外来屋顶的存在。结果,我们表明,每个属中都有有限的几何有限结束。此外,在属$ 1 $中,当末端与刺穿的圆环是同质的时,通用的圆环(从Baire类别中)则包含许多异国情调的屋顶。
Recent works [MMO1, arXiv:1802.03853, arXiv:1802.04423, arXiv:2101.08956] have shed light on the topological behavior of geodesic planes in the convex core of a geometrically finite hyperbolic 3-manifolds $M$ of infinite volume. In this paper, we focus on the remaining case of geodesic planes outside the convex core of $M$, giving a complete classification of their closures in $M$. In particular, we show that the behavior is different depending on whether exotic roofs exist or not. Here an exotic roof is a geodesic plane contained in an end $E$ of $M$, which limits on the convex core boundary $\partial E$, but cannot be separated from the core by a support plane of $\partial E$. A necessary condition for the existence of exotic roofs is the existence of exotic rays for the bending lamination. Here an exotic ray is a geodesic ray that has finite intersection number with a measured lamination $\mathcal{L}$ but is not asymptotic to any leaf nor eventually disjoint from $\mathcal{L}$. We establish that exotic rays exist if and only if $\mathcal{L}$ is not a multicurve. The proof is constructive, and the ideas involved are important in the construction of exotic roofs. We also show that the existence of geodesic rays satisfying a stronger condition than being exotic, phrased in terms of only the hyperbolic surface $\partial E$ and the bending lamination, is sufficient for the existence of exotic roofs. As a result, we show that geometrically finite ends with exotic roofs exist in every genus. Moreover, in genus $1$, when the end is homotopic to a punctured torus, a generic one (in the sense of Baire category) contains uncountably many exotic roofs.